Starting from:

$30

VE203-Assignment 5 Solved

Exercise 5.1 

Given a,b,c,d,m ∈ Z, m > 0. Show that

(i)        If a ≡ b (mod m), and d | m, d > 0, then a ≡ b (mod d).

(ii)       If a ≡ b (mod m), and c > 0, then ac ≡ bc (mod mc)

Exercise 5.2 

Given a,x,y,m ∈ Z, m > 0. Show that

(i)        .

(ii)       If ax ≡ ay (mod m) and gcd(a,m) = 1, then x ≡ y (mod m).

Exercise 5.3 

Given x,y ∈ Z, and positive intergers m1,...,mr, show that x ≡ y (mod mi) for i = 1,2,...,r iff x ≡ y (mod m), where m = lcm(m1,m2,...,mr).

Exercise 5.4 

Given p ∈ P, show that

(i)          x2 ≡ 1 (mod p) iff x ≡ ±1 (mod p).

(ii)        (Wilson’s theorem) (p − 1)! ≡ −1 (mod p).

(iii)       If p ≡ 3 (mod 4), then  .

Exercise 5.5 

We know that for all integers a coprime to 561, we have

       (i)       a3−1 ≡ 1 (mod 3)                  (ii) a11−1 ≡ 1 (mod 11)                (iii) a17−1 ≡ 1 (mod 17)

Show that a561 ≡ a (mod 561) for all integers a.

Exercise 5.6 

Given p,q ∈ P, a ∈ Z, show that

(i)          If aq ≡ 1 (mod p), then either p ≡ 1 (mod q) or a ≡ 1 (mod p).

(ii)        If 5 | a and p | a4 + a3 + a2 + a + 1, then p ≡ 1 (mod 5).

(iii)       Use (ii) to show that there are infinitely many primes of the form 10n + 1, n ∈ N.

Exercise 5.7 

Find prime factors of F5 = 225 + 1 by applying Fermat’s theorem.

Exercise 5.8 

Show that 2021 is not prime by Fermat test.

Exercise 5.9 

Sove the following system of linear congruence

x ≡ 2
(mod 4)
x ≡ 5
(mod 7)
x ≡ 0
(mod 11)
x ≡ 8
(mod 15)
Exercise 5.10 

(i)        Show that 6x ≡ 2 (mod 3) has no solutions.

(ii)       Show that 6x ≡ 2 (mod 5) has infinitely many solutions.

Page 1 of 2


Exercise 5.11 

Given public key (n,E) = (323,95), where 323 = 17 × 19.

(i)               Encrypt the message 233 by the encryption function e(x) = xE (mod n).

(ii)             Compute the private key D = E−1 (mod φ(n)). (iii) (2pts) Decrypt the encrypted message in (i).

Page 2 of 2

More products