Starting from:

$30

AppliedPlotting-Assignment 2 Solved

An NOAA dataset has been stored in the file data/C2A2_data/BinnedCsvs_d400/fb441e62df2d58994 This is the dataset to use for this assignment. Note: The data for this assignment comes from a subset of The National Centers for Environmental Information (NCEI) Daily Global Historical Climatology Network (GHCN-Daily). The GHCN-Daily is comprised of daily climate records from thousands of land surface stations across the globe.

Each row in the assignment datafile corresponds to a single observation. The following variables are provided to you:

id : station identification code
date : date in YYYY-MM-DD format (e.g. 2012-01-24 = January 24, 2012)
element : indicator of element typeTMAX : Maximum temperature (tenths of degrees C)
TMIN : Minimum temperature (tenths of degrees C)
value : data value for element (tenths of degrees C)
For this assignment, you must:

Read the documentation and familiarize yourself with the dataset, then write some python code which returns a line graph of the record high and record low temperatures by day of the year over the period 2005-2014. The area between the record high and record low temperatures for each day should be shaded.
Overlay a scatter of the 2015 data for any points (highs and lows) for which the ten year record (2005-2014) record high or record low was broken in 2015.
Watch out for leap days (i.e. February 29th), it is reasonable to remove these points from the dataset for the purpose of this visualization.
Make the visual nice! Leverage principles from the first module in this course when developing your solution. Consider issues such as legends, labels, and chart junk.
The data you have been given is near Ann Arbor, Michigan, United States, and the stations the data comes from are shown on the map below.

In [1]: import matplotlib.pyplot as plt

import mplleaflet import pandas as pd

def leaflet_plot_stations(binsize, hashid):

df = pd.read_csv('data/C2A2_data/BinSize_d{}.csv'.format(binsize))

station_locations_by_hash = df[df['hash'] == hashid]

lons = station_locations_by_hash['LONGITUDE'].tolist() lats = station_locations_by_hash['LATITUDE'].tolist()

plt.figure(figsize=(8,8))

plt.scatter(lons, lats, c='r', alpha=0.7, s=200)

return mplleaflet.display()

leaflet_plot_stations(400,'fb441e62df2d58994928907a91895ec62c2c42e6cd075c27

Out[1]: <IPython.core.display.HTML object>

In [2]: import matplotlib.pyplot as plt

#import mplleaflet import pandas as pd from datetime import date import numpy as np

df = pd.read_csv('data/C2A2_data/BinnedCsvs_d400/fb441e62df2d58994928907a91 df.head()

Out[2]:                                             ID                                 Date Element Data_Value

USW00094889 2014-11-12 TMAX    22
USC00208972 2009-04-29 TMIN     56
USC00200032 2008-05-26 TMAX    278
USC00205563 2005-11-11 TMAX    139
USC00200230 2014-02-27 TMAX    -106
In [3]: years=pd.DatetimeIndex(df['Date']).year months=pd.DatetimeIndex(df['Date']).month days=pd.DatetimeIndex(df['Date']).day df['Year']=years df['Month']=months df['Day']=days df['Data_Value']=df['Data_Value']/10 df.drop(['ID','Date'],1, inplace=True) df.head()

 

Out[3]:                                Element Data_Value Year Month Day

TMAX 2 2014               11           12
TMIN 6 2009               4              29
TMAX 8 2008             5              26
TMAX 9 2005             11           11
TMAX -10.6 2014           2              27
In [4]: df1=df[(df['Month']!=2) & (df['Day']!=29)]

df2=df1[df1['Year']<2015]

df_2015=df[df['Year']>=2015]

df2

#df.drop(leap_year.index)

Out[4]:                                              Element Data_Value Year Month Day

                        0                          TMAX                              2.2 2014                   11          12

TMAX 8 2008             5              26
TMAX 9 2005             11           11
                        5                          TMAX                            19.4 2010                    10            1

TMAX 9 2005             10           4
TMIN -1.6 2007              12           14
TMAX 2 2011               4              21
TMAX 1 2013               1              16
TMIN 7 2008               10           17
TMAX 3 2006             5              14
TMAX 2 2006             5              14
TMAX 7 2014               12           7
TMAX 0 2008             9              7
TMIN 7 2006               4              22
                        20                        TMIN                            -7.8 2011                       3         28

                        24                        TMIN                            10.0 2012                       3         20

TMAX 3 2006             5              11
TMAX 1 2012               3              31
TMAX 3 2010             7              25
TMIN 7 2014               12           9
TMIN 4 2012               3              20
TMIN 1 2007             8              4
TMIN 2 2010             7              24
TMAX 7 2013             8              23
TMAX 6 2008             5              26
TMIN 0 2005             8              6
TMIN -2.8 2010              1              19
TMIN 9 2012               6              26
TMIN 4 2010             10           26
TMIN 0 2014               11           12
                          ...                            ...                               ...              ...                     ... ...

TMIN 8 2010             6              17
TMIN 7 2007               4              25
TMAX 1 2012             7              31
165050
TMAX
1.7 2011
12
8
165051
TMIN
10.0 2008
9
18
165052
TMIN
5.0 2008
11
3
165053
TMAX
28.3 2011
6
27
165055
TMAX
11.1 2009
10
9
165057
TMAX
10.0 2009
11
24
165058
TMAX
9.4 2010
3
22
165060
TMAX
28.3 2010
5
23
165061
TMIN
-3.2 2012
12
26
165063
TMIN
13.3 2010
5
23
165064
TMIN
17.2 2008
8
4
165065
TMAX
1.7 2006
3
1
165066
TMAX
30.6 2008
8
4
165067
TMAX
1.7 2005
12
31
165068
TMAX
-3.9 2005
12
20
165069
TMIN
4.4 2011
3
18
165070
TMIN
2.8 2011
11
26
165071
TMAX
29.4 2010
6
19
165073
TMAX
22.2 2005
5
13
165074
TMAX
26.1 2009
7
9
165075
TMIN
10.0 2014
10
3
165077
TMIN
17.2 2014
7
14
165078
TMIN
14.4 2011
6
27
165079
TMIN
-6.7 2005
3
2
165081
TMAX
16.7 2009
10
6
165082
TMAX
28.3 2014
7
14
165084
TMIN
11.1 2006
9
4
[135204 rows x 5 columns]
In [5]: df_min=df2[df2['Element']=='TMIN'].groupby(['Month','Day']).aggregate({'Dat df_max=df2[df2['Element']=='TMAX'].groupby(['Month','Day']).aggregate({'Dat df_min_2015=df_2015[df_2015['Element']=='TMIN'].groupby(['Month','Day']).ag df_max_2015=df_2015[df_2015['Element']=='TMAX'].groupby(['Month','Day']).ag df_max

Out[5]:                                Month Day Data_Value

0                                    1            1              15.6

1                                    1            2              13.9

2                                    1            3              13.3

3                                    1            4              10.6

4                                    1            5              12.8

5                                    1            6              18.9

6                                    1            7              21.7

7                                    1            8              19.4

8                                    1            9              17.8

9                                    1            10           10.0

10                                1            11           15.6
 

1 12           1
1 13           7
1 14           0
1 15           7
1 16           4
1 17           3
1 18           2
1 19           6
1 20           3
1 21           3
1 22           7
1 23           8
1 24           7
1 25           0
1 26           9
1 27           8
1 28           2
1 30           3
1 31           4
                         ..                       ... ...                                    ...

12 1              3
12 2              6
12 3              3
12 4              3
12 5              2
12 6              8
12 7              3
12 8              2
12 9              3
12 10           1
12 11           8
12 12           3
12 13           1
12 14           9
12 15           0
12 16           9
12 17           4
12 18           6
12 19           2
12 20           3
12 21           6
12 22           3
12 23           3
12 24           9
12 25           0
12 26           6
12 27           9
12 28           4
324                        12             30           11.7

325                        12             31           13.9

[326 rows x 3 columns]

In [6]: #df_brokenRecord_min =df_min_2015[df_min_2015['Data_Value'] > (df_min_2015[ df3_min=pd.merge(df_min, df_min_2015, how='inner', on=['Month','Day']) df3_max=pd.merge(df_max, df_max_2015, how='inner', on=['Month','Day']) df_brokenRecord_min=df3_min[df3_min['Data_Value_x']>df3_min['Data_Value_y' df_brokenRecord_max=df3_max[df3_max['Data_Value_x']<df3_max['Data_Value_y' df3_min

Out[6]:                                      Month Day Data_Value_x Data_Value_y
                        0                        1
1
-16.0
-13.3
                        1                        1
2
-26.7
-12.2
                        2                        1
3
-26.7
-6.7
                        3                        1
4
-26.1
-8.8
                        4                        1
5
-15.0
-15.5
                        5                        1
6
-26.6
-18.2
                        6                        1
7
-30.6
-18.2
                        7                        1
8
-29.4
-21.1
                        8                        1
9
-27.8
-20.6
                        9                        1
10
-25.6
-20.6
                        10                     1
11
-18.3
-20.0
                        11                     1
12
-19.3
-11.7
                        12                     1
13
-25.0
-21.6
                        13                     1
14
-26.6
-24.4
                        14                     1
15
-27.2
-20.0
                        15                     1
16
-29.4
-16.7
                        16                     1
17
-29.4
-11.7
                        17                     1
18
-28.9
-10.0
                        18                     1
19
-30.0
-1.7
                        19                     1
20
-23.9
-3.3
                        20                     1
21
-26.0
-6.1
                        21                     1
22
-27.7
-6.7
                        22                     1
23
-25.0
-10.0
                        23                     1
24
-26.7
-6.1
                        24                     1
25
-24.3
-8.8
                        25                     1
26
-23.8
-15.0
                        26                     1
27
-23.9
-16.1
                        27                     1
28
-29.4
-17.2
                        28                     1
30
-23.3
-14.3
                        29                     1
31
-19.4
-15.6
                         ..                       ... ...
...
...
                        296                12            1
-13.2
-2.8
                        297                12            2
-13.3
-6.1
                        298                12            3
-10.0
-7.8
                        299                12            4
-12.2
-4.3
 
 
 




12 5              -15.5      -5.0
12 6              -18.3      -5.6
12 7              -19.4      -6.7
12 8              -20.0      -6.7
12 9              -18.9      -3.3
12 10           -17.2      -4.4
12 11           -16.7      0
12 12           -21.0      8
12 13           -17.8      7
12 14           -16.1      1
12 15           -16.6      9
12 16           -22.8      6
12 17           -22.2      -1.1
12 18           -19.4      -5.0
12 19           -16.1      -6.7
12 20           -16.7      -9.4
12 21           -19.4      -8.3
12 22           -20.0      6
12 23           -20.0      0
12 24           -16.7      0
12 25           -16.7      -3.2
12 26           -15.6      -3.9
12 27           -13.8      -0.6
12 28           -16.6      -3.9
12 30           -14.4      -2.2
12 31           -15.0      -5.6
rows x 4 columns]
In [7]: mins_values=df_min['Data_Value'].tolist()

mins_months=df_min['Month'].tolist()

mins_days=df_min['Day'].tolist()

mins_axis=[]

maxs_values=df_max['Data_Value'].tolist()

maxs_months=df_max['Month'].tolist()

maxs_days=df_max['Day'].tolist()

maxs_axis=[]

for i in range(len(mins_values)):

mins_axis.append((date(2015,mins_months[i],mins_days[i] ) - date(2015,

for i in range(len(maxs_values)):

maxs_axis.append((date(2015,maxs_months[i],maxs_days[i] ) - date(2015,

In [8]: df_brokenRecord_min.drop(['Data_Value_x'],1, inplace=True)

df_brokenRecord_max.drop(['Data_Value_x'],1, inplace=True) df_brokenRecord_min.rename(columns={'Data_Value_y': 'Data_Value'}, inplace df_brokenRecord_max.rename(columns={'Data_Value_y': 'Data_Value'}, inplace /opt/conda/lib/python3.6/site-packages/ipykernel/__main__.py:1: SettingWithCopyWarn

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/i if __name__ == '__main__':

/opt/conda/lib/python3.6/site-packages/ipykernel/__main__.py:2: SettingWithCopyWarn

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/i from ipykernel import kernelapp as app

/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py:2834: SettingWithCopyWa

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/i **kwargs)

In [9]: from datetime import date mins_brokenRecord_values=df_brokenRecord_min['Data_Value'].tolist() mins_brokenRecord_months=df_brokenRecord_min['Month'].tolist() mins_brokenRecord_days=df_brokenRecord_min['Day'].tolist() mins_brokenRecord_axis=[]

maxs_brokenRecord_values=df_brokenRecord_max['Data_Value'].tolist() maxs_brokenRecord_months=df_brokenRecord_max['Month'].tolist() maxs_brokenRecord_days=df_brokenRecord_max['Day'].tolist() maxs_brokenRecord_axis=[]

for i in range(len(mins_brokenRecord_values)): mins_brokenRecord_axis.append((date(2015,mins_brokenRecord_months[i],mi

for i in range(len(maxs_brokenRecord_values)):

maxs_brokenRecord_axis.append((date(2015,maxs_brokenRecord_months[i],ma

In [10]: plt.figure(figsize=(10,8)) colors = ['green', 'red']

plt.plot(mins_axis,mins_values, c='green', alpha = 0.3, label = 'Minimum T plt.plot(maxs_axis,maxs_values, c ='red', alpha = 0.3, label = 'Maximum Te plt.scatter(mins_brokenRecord_axis, mins_brokenRecord_values, s = 8, c = plt.scatter(maxs_brokenRecord_axis, maxs_brokenRecord_values, s = 8, c = plt.fill_between(mins_axis, mins_values, maxs_values, facecolor='grey', al plt.ylim(-45, 60)

plt.legend(loc ='best', frameon=False,fontsize=10)

plt.xticks( np.linspace(0, 30*11 , num = 12), (r'Jan', r'Feb', r'Mar', r'A plt.xlabel('Months',fontsize=12) plt.ylabel('Temperature (tenths of degrees C') plt.title('2015 temperature broke records vs (2005-2014) temperature recor plt.show()

More products