Starting from:

$25

AA530 - SOLID MECHANICS - HW #4  - Solved

1.                  [50 points] (Stretch) A state of deformation known as simple shear occurs when F is given by the component matrix:

é 1 g 0 ù ê       ú

F=ê 0 1 0 ú ê 0 0 1 ú ë     û

Given  = 0.5,

1.1.  Find left Cauchy-Green deformation tensor B and right Cauchy-Green deformation tensor C.

1.2.  Find eigenvalues (e1, e2, and e3) of B and C. Are they identical?  

1.3.  Find principal stretches (1, 2, 3) and principal stretch directions (b1, b2, and b3).  

 

1.  4. Verify that B = 12b1 b1+22b2 b2+32b3 b3 

1.5. Calculate three invariants and their alternative set (i.e., normalized form).  

 

 

 2.1 [20 points] (Hyperelastic material) Derive expressions for the Cauchy stress and the

Nominal stress for an incompressible, Neo-

Hookean material subjected to

 

2.1.1 Uniaxial tension (e1-directional stretch

is )

2.1.2 Equibiaxial tension (e1- and e2-directions stretches are )

 

2.2  [10 points] Repeat problem 2.1 for a Mooney-Rivlin material.   

 

2.3. [10 points] Repeat problem 2.1 for an Arruda-Boyce material.


2.3  [10 points] Repeat problem 2.1 for a Ogden material.

More products