Starting from:

$25

18.06-PS11 Solved

Exercises on Markov matrices; Fourier series 

Problem 24.1: (6.4 #7. Introduction to Linear Algebra: Strang)
   

a)     Find a symmetric matrix   that has a negative eigenvalue.

b)     How do you know it must have a negative pivot?

c)     How do you know it can’t have two negative eigenvalues?

Problem 24.2: (6.4 #23.) Which of these classes of matrices do A and B belong to: invertible, orthogonal, projection, permutation, diagonalizable,

                               Markov?                                                                                    

                                                                          A       B   .

Which of these factorizations are possible for A and B: LU, QR, SΛS−1, or

QΛQT?

1

Problem 24.3: (8.3 #11.) Complete A to a Markov matrix and find the steady state eigenvector. When A is a symmetric Markov matrix, why is x1 = (1, . . . , 1) its steady state?


                                                                                               A = ⎣ .1                        .

More products