Starting from:

$25

18.06-PS10 Solved

Exercises on differential equations and eAt 

Problem 23.1: (6.3 #14.a Introduction to Linear Algebra: Strang) The matrix in this question is skew-symmetric (AT = −A) : 

                                                                                                                                     

                                                             du = ⎡ −0c          0c  −ba ⎦⎤ u or       uu2 = au3 − cu13  

⎣ dt            b −a     0          u . 

Find the derivative of ||u(t)||2 using the definition: 

||u(t)||2 = u12 + u22 + u32. 

What does this tell you about the rate of change of the length of u? What does this tell you about the range of values of u(t)? 

            

Problem 23.2: (6.3 #24.) Write A   as SΛS−1. Multiply SeΛtS−1 

to find the matrix exponential eAt. Check your work by evaluating eAt and the derivative of eAt when t = 0. 

More products