Starting from:

$15

18.06- Exercises on similar matrices and Jordan form Solved

Problem 28.1: (6.6 #12. Introduction to Linear Algebra: Strang) These Jordan matrices have eigenvalues 0, 0, 0, 0. They have two eigenvectors; one from each block. However, their block sizes don’t match and they are not similar: 

 

0
1


0
0


  0
0






0      1 
0      0 
0      0 
0      0 
  0    0 
0      1 
0 0 
0 0 
                                                                                        ⎡⎤                                          ⎡⎤

J = ⎢⎢⎥⎥  and K = ⎢⎢⎥⎥ . 

                                                                                        ⎣⎦                                          ⎣⎦

For a generic matrix M, show that if JM = MK then M is not invertible and so J is not similar to K. 

Problem 28.2: (6.6 #20.) Why are these statements all true? 

a)     If A is similar to B then A2 is similar to B2. 

b)     A2 and B2 can be similar when A and B are not similar (try λ = 0, 0.) 

                               c)   is similar to  .

                               d)   is not similar to  .

e) Given a matrix A, let B be the matrix obtained by exchanging rows 1 and 2 of A and then exchanging columns 1 and 2 of A. Show that A is similar to B. 



MIT OpenCourseWare http://ocw.mit.edu 

More products