Starting from:

$25

18.06 -Exam - Solved

 This question is about an m by n matrix A for which

                                      

                                             ⎡1 ⎤                                                           ⎡0 ⎤

                                       

                                     Ax  has no solutions and                                      has exactly one solution.

(a)      Give all possible information about m and n and the rank r of A.

(b)     Find all solutions to Ax = 0 and explain your answer.

(c)      Write down an example of a matrix A that fits the description in part (a).

2

(24 The 3 by 3 matrix A reduces to the identity matrix I by the following three

row operations (in order):

E21 :
Subtract 4(row 1) from row 2.
E31 :
Subtract 3(row 1) from row 3.
E23 :
Subtract row 3 from row 2.
(a)      Write the inverse matrix A−1 in terms of the E’s. Then compute A−1 . 

(b)     What is the original matrix A ?

(c)      What is the lower triangular factor L in A = LU ?

4

(28                    This 3 by 4 matrix depends on c:

     

⎡1 1 2 4 ⎤

      



(a)      For each c find a basis for the column space of A.

(b)     For each c find a basis for the nullspace of A.

 

⎡1 ⎤

              

(c)      For each c find the complete solution .

6

(24                                                                                (a)       If A is a 3 by 5 matrix, what information do you have about the

nullspace of A ?

(b)     Suppose row operations on A lead to this matrix R = rref(A):

             

⎡1 4 0 0 0 ⎤

  

Write all known information about the columns of A.

(c)      In the vector space M of all 3 by 3 matrices (you could call this a matrix space), what subspace S is spanned by all possible row reduced echelon forms R ?

8

MIT OpenCourseWare http://ocw.mit.edu 

18.06SC Linear Algebra 

Fall 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

More products